37,609 research outputs found

    Improving Ontology Recommendation and Reuse in WebCORE by Collaborative Assessments

    Get PDF
    In this work, we present an extension of CORE [8], a tool for Collaborative Ontology Reuse and Evaluation. The system receives an informal description of a specific semantic domain and determines which ontologies from a repository are the most appropriate to describe the given domain. For this task, the environment is divided into three modules. The first component receives the problem description as a set of terms, and allows the user to refine and enlarge it using WordNet. The second module applies multiple automatic criteria to evaluate the ontologies of the repository, and determines which ones fit best the problem description. A ranked list of ontologies is returned for each criterion, and the lists are combined by means of rank fusion techniques. Finally, the third component uses manual user evaluations in order to incorporate a human, collaborative assessment of the ontologies. The new version of the system incorporates several novelties, such as its implementation as a web application; the incorporation of a NLP module to manage the problem definitions; modifications on the automatic ontology retrieval strategies; and a collaborative framework to find potential relevant terms according to previous user queries. Finally, we present some early experiments on ontology retrieval and evaluation, showing the benefits of our system

    Broadband suppression of backscattering at optical frequencies using low permittivity dielectric spheres

    Get PDF
    The exact suppression of backscattering from rotationally symmetric objects requires dual symmetric materials where ϵr=μr{\epsilon_r} = {\mu_r}. This prevents their design at many frequency bands, including the optical one, because magnetic materials are not available. Electromagnetically small non-magnetic spheres of large permittivity offer an alternative. They can be tailored to exhibit balanced electric and magnetic dipole polarizabilities, which result in approximate zero backscattering. In this case, the effect is inherently narrowband. Here, we put forward a different alternative that allows broadband functionality: Electromagnetically large spheres made from low permittivity materials. The effect occurs in a parameter regime that approaches the trivial ϵr→μr=1{\epsilon_r} \to {\mu_r} =1 case, where approximate duality is met in a weakly wavelength dependence fashion. Despite the low permittivity, the overall scattering response of the spheres is still significant. Radiation patterns from these spheres are shown to be highly directive across an octave spanning band. The effect is analytically and numerically shown using the Mie coefficients.Comment: 6 Figure

    Characterization of non-intentional emissions from distributed energy resources up to 500 kHz: A case study in Spain

    Get PDF
    Narrow Band Power Line Communications (NB-PLC) systems are currently used for smart metering and power quality monitoring as a part of the Smart Grid (SG) concept. However, non-intentional emissions generated by the devices connected to the grid may sometimes disturb the communications and isolate metering equipment. Though some research works have been recently developed to characterize these emissions, most of them have been limited to frequencies below 150 kHz and they are mainly focused on in-house electronic appliances and lightning devices. As NB-PLC can also be allocated in higher frequencies up to 500 kHz, there is still a lack of analysis in this frequency range, especially for emissions from Distributed Energy Resources (DERs). The identification and characterization of the emissions is essential to develop solutions that avoid a negative impact on the proper performance of NB-PLC. In this work, the non-intentional emissions of different types of DERs composing a representative microgrid have been measured in the 35–500 kHz frequency range and analyzed both in time and frequency domains. Different working conditions and coupling and commutation procedures to mains are considered in the analysis. Results are then compared to the limits recommended by regulatory bodies for spurious emissions from communication systems in this frequency band, as no specific limits for DERs have been established. Field measurements show clear differences in the characteristics of non-intentional emissions for different devices, working conditions and coupling procedures and for frequencies below and above 150 kHz. Results of this study demonstrate that a further characterization of the potential emissions from the different types of DERs connected to the grid is required in order to guarantee current and future applications based on NB-PLC.This work has been financially supported in part by the Basque Government (Elkartek program)

    Diplomacy and Security Community-Building: EU Crisis Management in the Western Mediterranean

    Get PDF
    ReviewBook Revie

    Tomography of high-redshift clusters with OSIRIS

    Get PDF
    High-redshift clusters of galaxies are amongst the largest cosmic structures. Their properties and evolution are key ingredients to our understanding of cosmology: to study the growth of structure from the inhomogeneities of the cosmic microwave background; the processes of galaxy formation, evolution, and differentiation; and to measure the cosmological parameters (through their interaction with the geometry of the universe, the age estimates of their component galaxies, or the measurement of the amount of matter locked in their potential wells). However, not much is yet known about the properties of clusters at redshifts of cosmological interest. We propose here a radically new method to study large samples of cluster galaxies using microslits to perform spectroscopy of huge numbers of objects in single fields in a narrow spectral range-chosen to fit an emission line at the cluster redshift. Our objective is to obtain spectroscopy in a very restricted wavelength range (~100 A in width) of several thousands of objects for each single 8x8 square arcmin field. Approximately 100 of them will be identified as cluster emission-line objects and will yield basic measurements of the dynamics and the star formation in the cluster (that figure applies to a cluster at z~0.50, and becomes ~40 and ~20 for clusters at z~0.75 and z~1.00 respectively). This is a pioneering approach that, once proven, will be followed in combination with photometric redshift techniques and applied to other astrophysical problems.Comment: 4 pages, 3 figures. Proceedings of "Science with the GTC", Granada (Spain), February 2002, RMxAA in pres
    • …
    corecore